Wake Forest Physics
|
Gravitation, Field Theory, Particle Physics, and AstrophysicsPaul Anderson, Eric Carlson, and Greg Cook lead research programs in fundamental problems related to gravitation, field theory, particle physics, and the early universe.
![]() Eric Carlson's research covers a variety of topics including both particle phenomenology and astrophysics. For the next decade or so, astrophysics will dominate discoveries in particle physics, since there are very few opportunities at high energy colliders for new discoveries.
One area he has focused on recently is the possibility of a naturally small cosmological constant. A positive cosmological constant could help resolve the apparent discrepancy between the large estimated ages of stars in globular clusters and the rather large value of the Hubble constant coming from most recent experiments. It is difficult to see how such a small cosmological constant could arise. In a paper with W.D. Garretson, he explored the possibility that the universe might have a zero cosmological constant in the true vacuum, but that we might lie in a false vacuum. The smallness of the splitting between the two vacua could arise due to the appearance of an accidental discrete symmetry connecting the two vacua. The splitting would be the result of Planck-scale suppressed nonrenormalizable terms which would violate the discrete symmetry. Carlson hopes to explore models which demonstrate these ideas in a more natural way in the near future. Neutrino physics is another area that interests Carlson. He has written several papers involving various neutrino mass generation mechanisms, and he is returning to this subject once more. Neutrino masses naturally arise in many extensions of the standard model, and could have important cosmological consequences. With new results from various solar neutrino and terrestrial neutrino experiments, and the appearance of new detectors in the near future, this will be a rapidly growing field. Carlson believes astroparticle physics to be one of the most promising areas in particle phenomenology in the next decade or two. ![]()
Cook and his collaborators are currently developing the theoretical and computational tools needed to simulate the collision of a pair of black holes. Numerical simulations are the only way to study the last few orbits and the ultimate coalescence of a compact binary system, and so, they are the only way to connect theory with experimental results. Some of the issues that are currently being studied are: the computation of initial conditions for black hole and neutron star binary systems, the formulation of stable evolution schemes, and locating the surfaces of black holes as they evolve. All of these problems are heavily computational and require the use of supercomputers such as the Physics Department's IBM SP2. ![]() |
Page Links |
![]() |
||
![]() 100 Olin Physical Laboratory Wake Forest University Winston-Salem, NC 27109-7507 Phone: (336) 758-5337, FAX: (336) 758-6142 E-mail: wfuphys@wfu.edu |